These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 3D hollow NiCo LDH nanocages anchored on 3D CoO sea urchin-like microspheres: A novel 3D/3D structure for hybrid supercapacitor electrodes. Author: Jiao Z, Chen Y, Du M, Demir M, Yan F, Xia W, Zhang Y, Wang C, Gu M, Zhang X, Zou J. Journal: J Colloid Interface Sci; 2023 Mar; 633():723-736. PubMed ID: 36508396. Abstract: The research on the structure of advanced electrode materials is significant in the field of supercapacitors. Herein, for the first time, we propose a novel 3D/3D composite structure by a multi-step process, in which 3D hollow NiCo LDH nanocages are immobilized on 3D sea urchin-like CoO microspheres. Results show that the 3D CoO acts as an efficient and stable channel for ion diffusion, while the hollow NiCo LDH provides abundant redox-active sites. The calculated results based on density function theory (DFT) show that the CoO@NiCo LDH heterostructure has an enhanced density of states (DOS) near the Fermi level and strong adsorption capacity for OH-, indicating its excellent electrical conductivity and electrochemical reaction kinetics. As a result, the CoO@NiCo LDH electrode has an areal specific capacity of 4.71C cm-2 at a current density of 3 mA cm-2 (440.19C g-1 at 0.28 A g-1) and can still maintain 88.76 % of the initial capacitance after 5000 cycles. In addition, the assembled hybrid supercapacitor has an energy density of 5.59 mWh cm-3 at 39.54 mW cm-3.[Abstract] [Full Text] [Related] [New Search]