These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Salidroside protects pancreatic β-cells against pyroptosis by regulating the NLRP3/GSDMD pathway in diabetic conditions. Author: Zhou J, Yan S, Guo X, Gao Y, Chen S, Li X, Zhang Y, Wang Q, Zheng T, Chen L. Journal: Int Immunopharmacol; 2023 Jan; 114():109543. PubMed ID: 36508922. Abstract: The NACHT, LRP, and PYD domains-containing protein 3 (NLRP3) inflammasome-evoked chronic inflammation is involved in the pathogenesis of diabetes mellitus (DM), and the NLRP3/gasdermin D (GSDMD)-mediated canonical pathway of pyroptosis leads to the loss of pancreatic β-cells and failure of pancreatic function in DM. A previous study demonstrated that salidroside (SAL) alleviates the pathological hyperplasia of pancreatic β-cells in db/db mice. However, it is not clear whether the NLRP3/GSDMD pathway-mediated pyroptosis can be regulated by SAL. In addition, the action of SAL on pancreatic β-cells in DM remains poorly understood. Thus, this study aimed to investigate the effects and underlying mechanisms of SAL on pancreatic β-cell pyroptosis. Rat insulinoma (INS-1) cells were cultured in a medium containing either high glucose (HG) or HG plus high insulin (HG-HI), and the effects of SAL on cell viability, AMP-activated protein kinase (AMPK) activity, reactive oxygen species (ROS) generation, NLRP3/GSDMD activation, and pyroptotic body formation were assessed. Streptozocin-induced DM mice were used to further investigate the effects of SAL on pancreatic pyroptosis. The results revealed aberrances on cell viability, AMPK activity, ROS generation, NLRP3/GSDMD activation, and pyroptotic body formation in HG- and HG-HI-exposed INS-1 cells; these abnormal effects were corrected by SAL in both a concentration- and AMPK-dependent manner. Moreover, SAL administration activated AMPK, suppressed NLRP3/GSDMD signaling, and protected pancreatic β-cells against pyroptosis in DM mice. These findings suggest that SAL promotes AMPK activation to suppress NLRP3/GSDMD-related pyroptosis in pancreatic β-cells under DM conditions.[Abstract] [Full Text] [Related] [New Search]