These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Herd and animal factors affect the variability of total and differential somatic cell count in bovine milk.
    Author: Stocco G, Cipolat-Gotet C, Stefanon B, Zecconi A, Francescutti M, Mountricha M, Summer A.
    Journal: J Anim Sci; 2023 Jan 03; 101():. PubMed ID: 36516415.
    Abstract:
    The aim of this study was to quantify some environmental (individual herds, herd productivity, milking system, and season) and animal factors [individual animals, breed, days in milk (DIM) and parity] on the variability of the log-10 transformation of somatic cell count (LSCC) and differential somatic cell count (DSCC) on individual bovine milk. A total of 159,360 test-day records related to milk production and composition were extracted from 12,849 Holstein-Friesian and 9,275 Simmental cows distributed across 223 herds. Herds were classified into high and low productivity, defined according to the average daily milk net energy output (DMEO) yielded by the cows. Data included daily milk yield (DYM; kg/d), milk fat, protein, lactose, SCC, and DSCC, and information on herds (i.e., productivity, milking system). The daily production of total and differential somatic cells in milk was calculated and then log-10 transformed, obtaining DLSCC and DLDSCC, respectively. Data were analyzed using a mixed model including the effects of individual herd, animal, repeated measurements intra animal as random, and herd productivity, milking system, season, breed, DIM, parity, DIM × parity, breed × season, DIM × milking system and parity × milking system as fixed factors. Herds with a high DMEO were characterized by a lower content of LSCC and DSCC, and higher DLSCC and DLDSCC, compared to the low DMEO herds. The association between milking system and somatic cell traits suggested that the use of the automatic milking systems would not allow for a rapid intervention on the cow, as evidenced by the higher content of all somatic cell traits compared to the other milking systems. Season was an important source of variation, as evidenced by high LSCC and DSCC content in milk during summer. Breed of cow had a large influence, with Holstein-Friesian having greater LSCC, DSCC, DLSCC, and DLDSCC compared to Simmental. With regard to DIM, the variability of LSCC was mostly related to that of DSCC, showing an increase from calving to the end of lactation, and suggesting the higher occurrence of chronic mastitis in cows toward the end of lactation. All the somatic cell traits increased across number of parities, possibly because older cows may have increased susceptibility to intramammary infections. This study investigated factors affecting the variability of somatic cell traits in bovine milk. Animal had greater influence on somatic cell score (SCS) and differential somatic cell count (DSCC) compared to herd factors. Herds producing high average of daily milk energy were characterized by lower SCS and DSCC compared to the low average daily milk energy herds. The SCS and DSCC were higher in Holstein-Friesian than in Simmental, and during summer with respect to the other seasons. Older cows at the end of lactation showed the highest content of somatic cell traits. These results are helpful for the management of somatic cell traits at herd and animal levels.
    [Abstract] [Full Text] [Related] [New Search]