These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effective leaching of spent lithium-ion batteries using DL-lactic acid as lixiviant and selective separation of metals through precipitation and solvent extraction. Author: Sahu S, Devi N. Journal: Environ Sci Pollut Res Int; 2023 Aug; 30(39):90152-90167. PubMed ID: 36520282. Abstract: Recycling cathodic materials from spent lithium-ion batteries (LIBs) is crucial not just for the environmental aspects but also for the supply of precious raw materials such as cobalt and lithium. As a result, developing a leaching process with low acid consumption, cost-effectiveness, low environmental impact, and high metal recovery is essential. In this article, the sustainable hydrometallurgical route for recovery of Li and Co from spent LIBs using DL-lactic acid as lixiviant is proposed. The different leaching parameters were studied to optimize the leaching conditions. With increasing lactic acid concentration from 0.1 mol/L to 1.0 mol/L, the leaching efficiency of Li and Co increased from 23% to 41% and 2% to 14%, respectively. The reductant H2O2 has a major role which reduced Co3+ to Co2+ and increasing the leaching efficiency of Co from 15.2% (1% H2O2) to 73.4% (6% H2O2). The maximum leaching efficiency of Li (99.8%) and Co (99%) was attained with 1.0 mol/L lactic acid, 6% H2O2, 60 °C, S/L ratio of 10 g/L, and 60 min leaching duration. The R2 values for the surface chemical reaction model were greater than 0.98, indicating that the lactic acid leaching process was controlled by the surface chemical reaction model. With 1.0 mol/L 70% saponified Cyanex 272, a solvent extraction study showed a higher separation factor (βCo/Li) of 35.7 compared to other saponified and nonsaponified organophosphorus extractants. Using the precipitation method, 99.9% of Co and 99% of Li were precipitated as [Formula: see text] and [Formula: see text] with a purity of 99.4% and 98.3%, respectively.[Abstract] [Full Text] [Related] [New Search]