These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genome-wide association study for milk production and conformation traits in Canadian Alpine and Saanen dairy goats. Author: Massender E, Oliveira HR, Brito LF, Maignel L, Jafarikia M, Baes CF, Sullivan B, Schenkel FS. Journal: J Dairy Sci; 2023 Feb; 106(2):1168-1189. PubMed ID: 36526463. Abstract: Increasing the productivity of Canadian dairy goats is critical to the competitiveness of the sector; however, little is known about the underlying genetic architecture of economically important traits in these populations. Consequently, the objectives of this study were as follows: (1) to perform a single-step GWAS for milk production traits (milk, protein, and fat yields, and protein and fat percentages in first and later lactations) and conformation traits (body capacity, dairy character, feet and legs, fore udder, general appearance, rear udder, suspensory ligament, and teats) in the Canadian Alpine and Saanen breeds; and (2) to identify positional and functional candidate genes related to these traits. The data available for analysis included 305-d milk production records for 6,409 Alpine and 3,434 Saanen does in first lactation and 5,827 Alpine and 2,632 Saanen does in later lactations; as well as linear type conformation records for 5,158 Alpine and 2,342 Saanen does. Genotypes were available for 833 Alpine and 874 Saanen animals. Both single-breed and multiple-breed GWAS were performed using single-trait animal models. Positional and functional candidate genes were then identified in downstream analyses. The GWAS identified 189 unique SNP that were significant at the chromosomal level, corresponding to 271 unique positional candidate genes within 50 kb up- and downstream, across breeds and traits. This study provides evidence for the economic importance of several candidate genes (e.g., CSN1S1, CSN2, CSN1S2, CSN3, DGAT1, and ZNF16) in the Canadian Alpine and Saanen populations that have been previously reported in other dairy goat populations. Moreover, several novel positional and functional candidate genes (e.g., RPL8, DCK, and MOB1B) were also identified. Overall, the results of this study have provided greater insight into the genetic architecture of milk production and conformation traits in the Canadian Alpine and Saanen populations. Greater understanding of these traits will help to improve dairy goat breeding programs.[Abstract] [Full Text] [Related] [New Search]