These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A deep learning approach to identify missing is-a relations in SNOMED CT.
    Author: Abeysinghe R, Zheng F, Bernstam EV, Shi J, Bodenreider O, Cui L.
    Journal: J Am Med Inform Assoc; 2023 Feb 16; 30(3):475-484. PubMed ID: 36539234.
    Abstract:
    OBJECTIVE: SNOMED CT is the largest clinical terminology worldwide. Quality assurance of SNOMED CT is of utmost importance to ensure that it provides accurate domain knowledge to various SNOMED CT-based applications. In this work, we introduce a deep learning-based approach to uncover missing is-a relations in SNOMED CT. MATERIALS AND METHODS: Our focus is to identify missing is-a relations between concept-pairs exhibiting a containment pattern (ie, the set of words of one concept being a proper subset of that of the other concept). We use hierarchically related containment concept-pairs as positive instances and hierarchically unrelated containment concept-pairs as negative instances to train a model predicting whether an is-a relation exists between 2 concepts with containment pattern. The model is a binary classifier leveraging concept name features, hierarchical features, enriched lexical attribute features, and logical definition features. We introduce a cross-validation inspired approach to identify missing is-a relations among all hierarchically unrelated containment concept-pairs. RESULTS: We trained and applied our model on the Clinical finding subhierarchy of SNOMED CT (September 2019 US edition). Our model (based on the validation sets) achieved a precision of 0.8164, recall of 0.8397, and F1 score of 0.8279. Applying the model to predict actual missing is-a relations, we obtained a total of 1661 potential candidates. Domain experts performed evaluation on randomly selected 230 samples and verified that 192 (83.48%) are valid. CONCLUSIONS: The results showed that our deep learning approach is effective in uncovering missing is-a relations between containment concept-pairs in SNOMED CT.
    [Abstract] [Full Text] [Related] [New Search]