These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Slow-light effects based on the tunable Fano resonance in a Tamm state coupled graphene surface plasmon system.
    Author: Ruan B, Li M, Liu C, Gao E, Zhang Z, Chang X, Zhang B, Li H.
    Journal: Phys Chem Chem Phys; 2023 Jan 18; 25(3):1685-1689. PubMed ID: 36541662.
    Abstract:
    We theoretically realize the tunable Fano resonance in a hybrid structure that allows the coupling between Tamm plasmon-polaritons (TPPs) and graphene surface plasmon-polaritons (SPPs). In this coupling system, a distributed Bragg reflector (DBR)/Ag structure is designed to generate the TPP with a narrow resonance, and the graphene SPP is excited by grating coupling with a broad resonance. The overlap of these two kinds of resonances results in the Fano resonance with a high-quality factor close to 1500. The behaviors of the Fano resonance are discussed carefully, and the results show that both the graphene Fermi level and the incidence angle can actively tune the profile of the Fano resonance. Owing to the ultrasharp spectrum of the tunable Fano resonance, our design may offer an alternative strategy for developing various optoelectronic devices such as filters, sensors, and nonlinear and slow-light devices. Finally, as an example of the potential applications, we apply the tunable Fano resonance to the slow-light effect, a high performance slow-light effect can be achieved, and the group delay can reach up to 52 ps.
    [Abstract] [Full Text] [Related] [New Search]