These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pulmonary edema with smoke inhalation, undetected by indicator-dilution technique. Author: Prien T, Traber LD, Herndon DN, Stothert JC, Lubbesmeyer HJ, Traber DL. Journal: J Appl Physiol (1985); 1987 Sep; 63(3):907-11. PubMed ID: 3654473. Abstract: Despite experimental evidence for an increase in extravascular lung water (EVLW) after inhalation injury, thermal-dye estimations of EVLW, extravascular thermal volume (EVTV), have repeatedly failed to demonstrate its presence in patients. This situation was evaluated in a sheep model. Under halothane anesthesia one lung was insufflated with cotton smoke and the other with air. EVTV values were 8.4 +/- 0.48 ml/kg at base line and were not elevated at 24 h after smoke inhalation (8.3 +/- 0.45 ml/kg; means +/- SE). Gravimetric analysis 24 h after smoke inhalation showed the development of edema in smoke-exposed lungs. The blood-free wet weight-to-dry weight ratio of the smoke-exposed lungs (5.4 +/- 0.32) was significantly higher compared with the contralateral unsmoked lungs (4.3 +/- 0.15; P less than or equal to 0.05). The thermal-dye technique thus underestimates EVLW. Poor perfusion of the smoke-exposed lungs 24 h after injury was demonstrated indirectly by killing a group of sheep with T-61, an agent that causes a dark red coloration of well-perfused lung areas, as well as directly by measurement of blood flow utilizing a radiolabeled microsphere technique. Thus the inability of the thermal-dye technique to detect the lung edema may be the result of poor perfusion of the injured lung.[Abstract] [Full Text] [Related] [New Search]