These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Proteolysis of smooth muscle myosin light chain kinase. Formation of inactive and calmodulin-independent fragments.
    Author: Ikebe M, Stepinska M, Kemp BE, Means AR, Hartshorne DJ.
    Journal: J Biol Chem; 1987 Oct 05; 262(28):13828-34. PubMed ID: 3654638.
    Abstract:
    Proteolysis by trypsin of gizzard myosin light chain kinase in the absence of Ca2+-calmodulin causes a biphasic effect on kinase activity. During the initial phase of proteolysis, Ca2+-calmodulin-dependent kinase activity is reduced over a thousand-fold. Further proteolysis, in the second phase, causes an increase in activity that is independent of Ca2+-calmodulin. Loss of activity is associated with the formation of a 64,000-dalton fragment. Calmodulin-independent activity is associated with the formation of a 61,000-dalton fragment. Procedures for the isolation of each fragment are outlined. Tryptic hydrolysis of the isolated 64,000-dalton peptide generates the 61,000-dalton peptide and increases calmodulin-independent activity. Km values for ATP and light chains for the native kinase and two fragments are the same, i.e. approximately 100 and 5 microM, respectively. Neither fragment binds to F-actin. Amino acid analyses of both fragments are given. Synthetic peptides corresponding to the calmodulin-binding regions of the smooth and skeletal muscle kinases are potent inhibitors of the 61,000-dalton fragment. These data demonstrate the existence of an inhibitory region that is suggested to be located between the active site and the calmodulin-binding site. Whether it is distinct from or at the N-terminal end of the calmodulin-binding site cannot be determined from these data.
    [Abstract] [Full Text] [Related] [New Search]