These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of Agar on the Mechanical, Thermal, and Moisture Absorption Properties of Thermoplastic Sago Starch Composites.
    Author: Taharuddin NH, Jumaidin R, Ilyas RA, Kamaruddin ZH, Mansor MR, Md Yusof FA, Knight VF, Norrrahim MNF.
    Journal: Materials (Basel); 2022 Dec 15; 15(24):. PubMed ID: 36556760.
    Abstract:
    Thermoplastic starch is a material that has the potential to be environmentally friendly and biodegradable. However, it has certain drawbacks concerning its mechanical performance and is sensitive to the presence of moisture. The current study assessed agar-containing thermoplastic sago starch (TPSS) properties at various loadings. Variable proportions of agar (5%, 10%, and 15% wt%) were used to produce TPSS by the hot-pressing method. Then, the samples were subjected to characterisation using scanning electron microscopy (SEM), mechanical analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and moisture absorption tests. The results demonstrated that adding agar to starch-based thermoplastic blends significantly improved their tensile, flexural, and impact properties. The samples' morphology showed that the fracture had become more erratic and uneven after adding agar. FT-IR revealed that intermolecular hydrogen bonds formed between TPSS and agar. Moreover, with an increase in agar content, TPSS's thermal stability was also increased. However, the moisture absorption values among the samples increased slightly as the amount of agar increased. Overall, the proposed TPSS/agar blend has the potential to be employed as biodegradable material due to its improved mechanical characteristics.
    [Abstract] [Full Text] [Related] [New Search]