These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of ischemia-induced subcellular redistribution of lysosomal enzymes in the perfused rat heart by the calcium entry blocker, diltiazem. Author: Ichihara K, Haneda T, Onodera S, Abiko Y. Journal: J Pharmacol Exp Ther; 1987 Sep; 242(3):1109-13. PubMed ID: 3656110. Abstract: Effect of diltiazem on subcellular distribution of lysosomal enzymes, high-energy phosphate metabolism and mechanical function in the ischemic heart was studied. Ischemia was induced by lowering the afterload pressure of the perfused working rat heart. The activities of cathepsin D, beta,N-acetylglucosaminidase and acid phosphatase were determined in the nonsedimentable and sedimentable fractions after centrifugation of the tissue extract to assess the subcellular distribution of lysosomal enzymes. After ischemia, decreases in the mechanical function and the tissue level of high-energy phosphates were observed. In addition, ischemia caused subcellular redistribution of lysosomal enzymes from the lysosomes to the cytoplasm. Reperfusion of the ischemic heart did not restore the mechanical function and the level of high-energy phosphates completely. Diltiazem (2.21 X 10(-6), 1.11 X 10(-5) and 2.21 X 10(-5) M) was provided for the heart 5 min before the onset of ischemia. Diltiazem preserved high-energy phosphates in the ischemic heart, and inhibited the subcellular redistribution of lysosomal enzymes being caused by ischemia, depending on its concentration. Reperfusion after ischemia with diltiazem recovered the mechanical function that had been decreased by ischemia. These results may indicate that diltiazem can protect the myocardium against ischemic damage.[Abstract] [Full Text] [Related] [New Search]