These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spectroscopic studies on histone-DNA interactions. II. Three transitions in nucleosomes resolved by salt-titration. Author: Oohara I, Wada A. Journal: J Mol Biol; 1987 Jul 20; 196(2):399-411. PubMed ID: 3656451. Abstract: The multiple-step transitions in DNA-histone interactions in chicken erythrocyte nucleosomes with increasing ionic strength are resolved by salt-titration spectroscopy. Both the circular dichroism of the DNA and the fluorescence of the histones in nucleosomes change during the titration process with concentrations of NaCl from 0.1 M to 2.5 M. By differentiating the titration curves, three distinct peaks corresponding to three structural transitions are observed. The two peaks near 0.95 M and 1.45 M-NaCl are common to the circular dichroism and fluorescence curves. The circular dichroism curve has another peak near 0.55 M-NaCl. Because the derivative of the fluorescence titration curve for the DNA-(H3, H4) complex has only one peak near 1.45 M-NaCl, that peak is attributed to the dissociation of the histone dimer (H3, H4). The peak near 0.95 M-NaCl corresponds to the dissociation of the dimer (H2A, H2B) from the DNA-(H3, H4) complex, as shown by binding experiments of (H2A, H2B) to the DNA-(H3, H4) complex at the salt concentration near this peak. The peak near 0.55 M-NaCl reflects some inner-core structural change. As the change of the circular dichroism signal is reversible, salt-titration spectroscopy is applicable to equilibrium studies of the physical chemical properties of DNA-histone interactions. By the assumption of a non-co-operative model, the binding constant for the chicken erythrocyte (H2A, H2B) dimer to the DNA-(H3, H4) complex is calculated as 2.8 X 10(6) M-1 at 1.0 M-NaCl (20 degrees C, pH 7.6). The DNA sequence dependence of the stability of the DNA-(H3, H4) interaction is observed in the salt-titration profiles of reconstituted material. Decreasing stability of the interaction of (H3, H4) is observed following the order: poly[(dG)-(dC)] much greater than chicken erythrocyte DNA greater than poly[(dA)-(dT)]. It is concluded that histones (H3, H4) have a different DNA sequence dependence from histones (H2A, H2B).[Abstract] [Full Text] [Related] [New Search]