These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distinctive patterns of Multiple Object-Tracking performance trajectories in youth with deficits in attention, learning, and intelligence. Author: Tullo D, Faubert J, Bertone A. Journal: Res Dev Disabil; 2023 Feb; 133():104402. PubMed ID: 36565518. Abstract: There is a significant overlap in symptomology between individuals with deficits in attention and learning, which is explained by the co-dependent dynamic between the two cognitive constructs. Within this dynamic, attentional resources are allocated to salient stimuli while learning mechanisms distinguish relevant from irrelevant information. Moreover, individuals with deficits in higher-order cognition (i.e., intelligence) can demonstrate difficulties in attention and learning. The Multiple Object-Tracking (MOT) task is a sensitive and versatile measure of attention that has characterized individual differences in attention as a function of higher-order cognition. Exploiting the traditional MOT task's ability to characterize the allocation of attentional resources to task demands, the current study compared learning exhibited on an attention-based task across neurodevelopmental conditions defined by deficits in attention (attention-deficit/hyperactivity disorder; ADHD), learning (specific learning disorder; SLD), and intelligence (intellectual developmental disorder; IDD). Children and adolescents (N = 101) completed 15 sessions on a Multiple Object-Tracking (MOT) task where performance trajectories were analyzed using latent growth curve modeling and conditioned by the presence of ADHD, SLD, or IDD while controlling for performance on a separate measure of attention, age, and sex. The sample, characterized by below-average IQ and problematic levels of attention, exhibited an effect of learning on MOT. However, individuals with an IDD diagnosis demonstrated decreased baseline MOT capability while ADHD and SLD profiles exhibited decreased slopes, relative to other neurodevelopmental conditions. Taken together, the results demonstrate distinct linear performance trajectories between neurodevelopmental conditions defined by deficits in attention, learning, and intelligence. The current study provides additional evidence to repurpose the traditional MOT task as a descriptor of attention and discusses alternative uses for the paradigm. Overall, these results suggest an eclectic approach that considers attention, learning, and higher-order cognition when diagnosing ADHD, SLD, or IDD.[Abstract] [Full Text] [Related] [New Search]