These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of peroxymonosulfate by Co-Mg-Fe layered doubled hydroxide for efficient degradation of Rhodamine B.
    Author: Liu G, Liu Y, Chen D, Wang C, Guan W.
    Journal: Environ Sci Pollut Res Int; 2023 Mar; 30(13):37634-37645. PubMed ID: 36574127.
    Abstract:
    Reactive species serve as a key to remediate the contamination of refractory organic contaminants in advanced oxidation processes. In this study, a novel heterogeneous catalyst, CoMgFe-LDH layered doubled hydroxide (CoMgFe-LDH), was prepared for an efficient activation of peroxymonosulfate (PMS) to oxidize Rhodamine B (RhB). The characterization results showed that CoMgFe-LDH had a good crystallographic structure. Correspondingly, the CoMgFe-LDH/PMS process exhibited good capacity to remove RhB, which was equivalent to degradation performance as homogeneous Co(II)/PMS process. The RhB oxidation in the CoMgFe-LDH/PMS process was well described with pseudo-first-order kinetic model. Additionally, the oxidation process presented an excellent stability, and only 0.9% leaching rate was detected after six sequential reaction cycles at pH 5.0. The effects of initial pH, CoMgFe-LDH dosage, PMS concentration, RhB concentration, and inorganic anions on the RhB degradation were discussed in detail. Quenching experiments showed that sulfate radicals (SO4•-) acted as the dominant reactive species. Further, the removal of RhB from simulated wastewater was explored. The removal efficiency of RhB (90 μM) could reach 94.3% with 0.8 g/L of catalyst and 1.2 mM of PMS addition at pH 5.0, which indicated the CoMgFe-LDH/PMS process was also effective in degrading RhB in wastewater.
    [Abstract] [Full Text] [Related] [New Search]