These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microbial Population Dynamics in Lemnaceae (Duckweed)-Based Wastewater Treatment System.
    Author: Singh P, Jani K, Sharma S, Rale V, Souche Y, Prakash S, Jogdeo P, Patil Y, Dhanorkar MN.
    Journal: Curr Microbiol; 2022 Dec 31; 80(2):56. PubMed ID: 36585971.
    Abstract:
    The dynamic microflora associated within, and in the surrounding aquatic environment, has been found to be responsible for the functional properties of many aquatic plants. The aim of the current work was to evaluate the effectiveness of Lemnaceae-based wastewater treatment system under tropical conditions and investigate the changes in the aquatic microflora upon plant growth. A biological wastewater treatment system was designed and investigated using mixed Lemnaceae culture comprising Lemna minor and Spirodela polyrhiza in a batch mode. A significant reduction in total solids (31.8%), biochemical oxygen demand (93.5%), and chemical oxygen demand (73.2%) was observed after seven days of duckweed growth using a low inoculum. A preliminary study on the change in the microbial population diversity and functionality, in the wastewater before and after treatment, revealed an increase in the denitrifying microflora in wastewater post-Lemnaceae treatment. Dominance of 10 bacterial phyla, contributing for 98.3% of the total bacterial communities, was recorded, and ~ 50.6% loss of diversity post-treatment of wastewater was revealed by the Shannon Index. Among 16 bacterial families showing relative abundance of ≥ 1% in untreated wastewater, Methylobacteriaceae, Pseudomonadaceae, Brucellaceae, Rhodobacteraceae, and Acetobacteraceae prevailed in the water post-treatment by duckweeds. This is a novel work done on the dynamics of aquatic microflora associated with Lemnaceae under tropical Indian conditions. It confirms the application of Lemnaceae-based wastewater treatment system as effective biofilter and calls for further studies on the active involvement of the endophytic and aquatic microflora in the functions of these plant.
    [Abstract] [Full Text] [Related] [New Search]