These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Breathing pattern in rats with chronic section of the superior laryngeal nerves. Author: Mortola JP, Piazza T. Journal: Respir Physiol; 1987 Oct; 70(1):51-62. PubMed ID: 3659609. Abstract: In a first set of experiments we registered the integrated afferent activity of the superior laryngeal nerve (SLN) in adult anaesthetized rats. The activity increased with positive upper airway pressure (Pua); with progressively more negative Pua, the SLN activity at first declined then increased again. A second set of adult rats underwent bilateral section of the SLN (SLN denervated) or a sham operation (controls). Both groups appeared to recover promptly from the operation and 6 days later their resting breathing pattern was recorded by the barometric method. SLN denervated rats had a shorter inspiratory time (80%), hence higher frequency and mean inspiratory flow, than controls. During hypoxia (10 min at 10% O2) both groups hyperventilated with an almost identical pattern. The rats were then again anaesthetized and the right vagus cut in an attempt to reduce the afferent component from the lower airways, which may have masked the SLN regulatory contribution. One week after this second operation both SLN denervated and controls breathed more deeply and slowly than before vagotomy, but the pattern was not significantly different between the two groups, either in normoxia or hypoxia. Finally, the rats were anaesthetized and integrated diaphragm activity recorded during spontaneous breathing and the first effort against closure of the nostrils. With both vagi cut, the duration of the occluded effort was slightly longer in SLN denervated than in controls. These results suggest that in adult awake rats laryngeal afferent activity tends to decrease mean inspiratory flow. However, this regulatory contribution is small during eupnea and insignificant during hypoxic hyperventilation.[Abstract] [Full Text] [Related] [New Search]