These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pd-PdO Nanodomains on Amorphous Ru Metallene Oxide for High-Performance Multifunctional Electrocatalysis. Author: Do VH, Prabhu P, Jose V, Yoshida T, Zhou Y, Miwa H, Kaneko T, Uruga T, Iwasawa Y, Lee JM. Journal: Adv Mater; 2023 Mar; 35(12):e2208860. PubMed ID: 36598813. Abstract: Developing highly efficient multifunctional electrocatalysts is crucial for future sustainable energy pursuits, but remains a great challenge. Herein, a facile synthetic strategy is used to confine atomically thin Pd-PdO nanodomains to amorphous Ru metallene oxide (RuO2 ). The as-synthesized electrocatalyst (Pd2 RuOx-0.5 h) exhibits excellent catalytic activity toward the pH-universal hydrogen evolution reaction (η10 = 14 mV in 1 m KOH, η10 = 12 mV in 0.5 m H2 SO4 , and η10 = 22 mV in 1 m PBS), alkaline oxygen evolution reaction (η10 = 225 mV), and overall water splitting (E10 = 1.49 V) with high mass activity and operational stability. Further reduction endows the material (Pd2 RuOx-2 h) with a promising alkaline oxygen reduction activity, evidenced by high halfway potential, four-electron selectivity, and excellent poison tolerance. The enhanced catalytic activity is attributed to the rational integration of favorable nanostructures, including 1) the atomically thin nanosheet morphology, 2) the coexisting amorphous and defective crystalline phases, and 3) the multi-component heterostructural features. These structural factors effectively regulate the material's electronic configuration and the adsorption of intermediates at the active sites for favorable reaction energetics.[Abstract] [Full Text] [Related] [New Search]