These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lanthanide ternary complex as a fluorescent probe for highly sensitive and selective detection of copper ions based on selective recognition and photoinduced electron transfer.
    Author: Wang J, Pei J, Li G.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr 05; 290():122287. PubMed ID: 36603275.
    Abstract:
    Copper ions have a very important role in human health, industrial and agricultural production. Herein, lanthanide ternary complex of 2,6-pyridinedicarboxylic acid (DPA)-Eu3+-polyethyleneimine (PEI) as a fluorescent probe was thus fabricated for highly sensitive and selective detection of copper ions. PEI itself is non-fluorescent, the PEI-Eu3+complex is also non-fluorescent, and PEI has specific recognition to copper ions due to its higher affinity ability to copper ion than other metal ions. It was found that Cu2+ ions cannot quench the characteristic fluorescence of Eu3+ in the DPA-Eu3+ system, while in the DPA-Eu3+-PEI system, Cu2+ ions can greatly quench the characteristic fluorescence of Eu3+ due to photoinduced electron transfer (PET). The luminescent and quenching mechanism was also discussed in detail. The DPA-Eu3+-PEI probe not only has high sensitivity and selectivity, but also has very rapid fluorescence response and the response time is only 1 min. A good linear relationship between the fluorescence ratios of F0/F and the concentrations of Cu2+ was obtained in the range of 0.02 ∼ 10.0 μM (R2 = 0.998), and the limit of detection (LOD) is 8.0 nM. The probe was successfully applied for the detection of Cu2+ ions in the lake and river water samples, wastewater and urine samples. This work may provide a new strategy for fabricating simple and effective fluorescence probe and a promising application for the rapid and on-site detection in environmental monitoring and biological fluids.
    [Abstract] [Full Text] [Related] [New Search]