These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Noval green sodium alginate/gellan gum aerogel with 3D hierarchical porous structure for highly efficient and selective removal of Congo red from water.
    Author: Qin Z, Dong K, Zhang Y, Jiang Y, Mo L, Xiao S.
    Journal: Bioresour Technol; 2023 Feb; 370():128576. PubMed ID: 36603751.
    Abstract:
    Rational design of adsorbed materials with three-dimensional (3D) hierarchical porous structure, sustainable, high adsorption capacity, and excellent selective is of great significance in practical applications. Herein, a novel aerogel adsorbed material with 3D hierarchical porous architecture was fabricated by employing naturally abundant sodium alginate (SA)/gellan gum (GG) as basic construction blocks to achieve sustainability as well as applying polyethyleneimine (PEI) as functional material for highly efficient and selective capture of Congo red (CR). The aerogel sorbent exhibited strong microstructure, numerous active adsorption sites and being ultralight. The resulting aerogel adsorbent showed high adsorption capacity (3017.23 mg/g) toward CR, exceedingly most previously reported sorbents. Furthermore, the aerogel adsorbent was accompanied by outstanding selectivity for CR in four binary dye systems. Meanwhile, after 3 cycles, the adsorption capacity decreased by 14.8 %, but still maintained the adsorption capacity of 559.79 mg/g. Therefore, excellent adsorption performance, and superb selectivity prefigures its great prospects for wastewater purification.
    [Abstract] [Full Text] [Related] [New Search]