These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Membrane skeleton hyperstability due to a novel alternatively spliced 4.1R can account for ellipsoidal camelid red cells with decreased deformability. Author: Chen Y, Miyazono K, Otsuka Y, Kanamori M, Yamashita A, Arashiki N, Matsumoto T, Takada K, Sato K, Mohandas N, Inaba M. Journal: J Biol Chem; 2023 Feb; 299(2):102877. PubMed ID: 36621628. Abstract: The red blood cells (RBCs) of vertebrates have evolved into two basic shapes, with nucleated nonmammalian RBCs having a biconvex ellipsoidal shape and anuclear mammalian RBCs having a biconcave disk shape. In contrast, camelid RBCs are flat ellipsoids with reduced membrane deformability, suggesting altered membrane skeletal organization. However, the mechanisms responsible for their elliptocytic shape and reduced deformability have not been determined. We here showed that in alpaca RBCs, protein 4.1R, a major component of the membrane skeleton, contains an alternatively spliced exon 14-derived cassette (e14) not observed in the highly conserved 80 kDa 4.1R of other highly deformable biconcave mammalian RBCs. The inclusion of this exon, along with the preceding unordered proline- and glutamic acid-rich peptide (PE), results in a larger and unique 90 kDa camelid 4.1R. Human 4.1R containing e14 and PE, but not PE alone, showed markedly increased ability to form a spectrin-actin-4.1R ternary complex in viscosity assays. A similar facilitated ternary complex was formed by human 4.1R possessing a duplication of the spectrin-actin-binding domain, one of the mutations known to cause human hereditary elliptocytosis. The e14- and PE-containing mutant also exhibited an increased binding affinity to β-spectrin compared with WT 4.1R. Taken together, these findings indicate that 4.1R protein with the e14 cassette results in the formation and maintenance of a hyperstable membrane skeleton, resulting in rigid red ellipsoidal cells in camelid species, and suggest that membrane structure is evolutionarily regulated by alternative splicing of exons in the 4.1R gene.[Abstract] [Full Text] [Related] [New Search]