These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sb-doped FeOCl nanozyme-based biosensor for highly sensitive colorimetric detection of glutathione.
    Author: Chen J, Wu H, Liu J, Su Y, Li H, Lin P, Chen Y, Xiao W, Cao D.
    Journal: Anal Bioanal Chem; 2023 Mar; 415(6):1205-1219. PubMed ID: 36625896.
    Abstract:
    Nanozymes have been emerging as substitutes for natural enzymes to construct biosensors towards biomolecular detection. However, the detection of glutathione (GSH) by nanozyme-based biosensors still remains a great challenge for research on catalytic activity enhancement and the detection mechanism. In this work, Sb-doped iron oxychloride (Sb-FeOCl) with a well-defined nanorod-like structure is prepared by high-temperature calcination. Sb-FeOCl nanorods have high peroxidase-like activity, which can catalyze the decomposition of H2O2 into ·OH and then oxidize 3,3',5,5'-tetramethylbenzidine (TMB). In view of these intriguing observations, a reliable colorimetric method with a simple mixing and detection strategy is developed for the detection of GSH. The linear range of GSH detection is 1-36 μM. The detection limit of GSH reaches a low level of 0.495 μM (3σ/slope). The GSH sensing system also exhibits excellent specificity and anti-interference. Taking advantage of the advantages of the Sb-FeOCl nanorod-based biosensor, it can be used to quantitatively detect GSH levels in human serum. It can be anticipated that the Sb-FeOCl nanorods have broad prospects in the field of enzymatic biochemical reactions.
    [Abstract] [Full Text] [Related] [New Search]