These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Smartphone-assisted colorimetric detection of Salmonella typhimurium based on the catalytic reduction of 4-nitrophenol by β-cyclodextrin-capped gold nanoparticles. Author: Su Z, Wei S, Shi X, Wang X, Zhang L, Bu X, Xu H, Liu Y, Jin M, Pang B, Zhao C. Journal: Anal Chim Acta; 2023 Jan 25; 1239():340672. PubMed ID: 36628755. Abstract: Salmonella typhimurium (S. typhimurium) is one of the most common pathogens in the environment, such as in drinking water and soil. Herein, an on-site detection method was developed by combining silver-coated magnetic nanoparticles (Fe3O4@Ag NPs) with the β-cyclodextrin-capped gold nanoparticles (β-CD-Au NPs) to achieve sensitive detection of S. typhimurium. After they formed a sandwich structure in the presence of S. typhimurium, the 4-nitrophenol was reduced to 4-aminophenol based on the nitro-reductase activity of β-CD-Au NPs. The naked eyes were able to observe the color change from yellow to colorless. Under optimal conditions, the detection range of S. typhimurium was 10-107 CFU mL-1, and the limit of detection (LOD) was 10 CFU mL-1. The total detection time was 90 min, showing satisfactory performance in real samples. We combined a smartphone app with the colorimetric method, making it possible to semi-quantitatively detect S. typhimurium by analyzing the grey value. In conclusion, this assay detects S. typhimurium in environmental samples, offering an accurate and sensitive detection method without sophisticated equipment.[Abstract] [Full Text] [Related] [New Search]