These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel urokinase plasminogen activator receptor-targeted peptide-based probe for in-vivo molecular imaging of glioblastoma. Author: Han Y, Tu L, Zhang Y, Xu L, Sun Z. Journal: Nucl Med Commun; 2023 Feb 01; 44(2):142-149. PubMed ID: 36630218. Abstract: AIM: The urokinase plasminogen activator receptor (uPAR) is a promising biomarker for cancer diagnosis and therapy. We herein fabricated a new type of uPAR-targeted imaging probe Al18F-NOTA-VC and preliminarily evaluated its potential application in PET imaging of the glioma model in vivo. METHODS: Peptide VC was synthesized and identified by MALDI-TOF-MS. The IC50 between VC/precursor NOTA-VC and uPAR was then determined before the synthesis and purification of Al18F-NOTA-VC, followed by further studies of in-vitro properties of Al18F-NOTA-VC. Meanwhile, the AE105-based probe followed a similar procedure in-vitro test. Finally, the PET imaging properties, including uPAR-targeting ability and the metabolism of Al18F-NOTA-VC, were investigated. RESULTS: The VC and NOTA-VC were obtained successfully and demonstrated a good affinity with uPAR. Followed by Al18F labeling successfully, excellent properties, including the serum stability, water solubility, and specificity of Al18F-NOTA-VC, were obtained in-vitro test compared with AE105 based probe. An excellent tumor uptake and renal excretion data of Al18F-NOTA-VC were acquired from in-vivo U87MG tumor model PET imaging, consistent with the subsequent biodistribution study. CONCLUSION: In addition to the excellent specificity and high tumor/normal tissue contrast for uPAR-targeted PET imaging of U87MG tumor, Al18F-NOTA-VC possessed promising clearance ability by renal system route. These excellent properties facilitated Al18F-NOTA-VC to be a promising imaging agent for uPAR high-expressing tumors and, thus, provided a paradigm for developing peptide-based probes for uPAR-associated disease diagnosis.[Abstract] [Full Text] [Related] [New Search]