These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Highly sensitive AuNSs@AgNR SERS substrates for rapid determination of aromatic amines.
    Author: Zhang Q, Liu Z, Zhang H, Han C, Wu Y, Yan C, Liu Y, Wu B, Yang G, Duan P.
    Journal: Analyst; 2023 Feb 13; 148(4):814-822. PubMed ID: 36632825.
    Abstract:
    The leakage of aromatic amines will pose a great threat to human health and the ecological environment. Therefore, there is an urgent need to achieve rapid and high-sensitivity detection of such substances. In this study, a simple surface-enhanced Raman scattering (SERS) method based on gold nanostars-modified silver nanorods (AuNSs@AgNRs) was established for the detection of benzidine and 4-aminobiphenyl (4-ABP). The enhancement factors of the substrate towards rhodamine 6G (R6G) and crystal violet (CV) were 4.67 × 108 and 1.11 × 108, respectively. Combined with density functional theory (DFT), the AuNSs@AgNR substrate achieved the rapid detection of benzidine and 4-ABP and obtained low detection limits (LODbenzidine = 7.09 × 10-9 M; LOD4-ABP = 1.20 × 10-9 M). Furthermore, the AuNSs@AgNR substrate can realize the high-sensitivity detection of benzidine and 4-ABP in the spiked river water samples within 3 min, which means that the AuNSs@AgNR-based SERS method can be used as a portable platform to realize the on-site rapid detection of environmental pollutants.
    [Abstract] [Full Text] [Related] [New Search]