These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Strength of implant-supported lithium disilicate and polymer-infiltrated ceramic network restorations after thermomechanical aging. Author: Gil A, Eliades G, Özcan M, Jung RE, Hämmerle CHF, Ioannidis A. Journal: Int J Comput Dent; 2023 Sep 26; 26(3):237-245. PubMed ID: 36632986. Abstract: AIM: To evaluate the fracture load and type of failure of two different monolithic restorative materials bonded to standardized titanium bases and fabricated by two different procedures regarding the bonding interface. MATERIALS AND METHODS: All screw-retained implant crown specimens (n = 40), subjected to fatigue by thermomechanical loading, differed in the restorative material (lithium disilicate [LDS] or polymer-infiltrated ceramic network [PICN], referred to as 'hybrid ceramic' [HYC]) and the interface type between the restorative material and the titanium base abutment (prefabricated ex-factory or produced during a CAM-milling procedure). This resulted in the following groups (n = 10/group): 1) LDS-M: lithium disilicate crown with a CAM-milled interface; 2) LDS-P: lithium disilicate crown with a prefabricated interface; 3) HYC-M: PICN crown with a CAM-milled interface; and 4) HYC-P: PICN crown with a prefabricated interface. Aged specimens underwent static fracture load testing. The load (N) at which the initial crack occurred was denoted as Finitial, and the maximal load (N) at which the restorations fractured as Fmax. All specimens were examined under a stereomicroscope to determine the failure mode. RESULTS: The median Finitial values were 180 N for LDS-M, 343 N for LDS-P, 340 N for HYC-M, and 190 N for HYC-P. The median Fmax values were 1822 N for LDS-M, 2039 N for LDS-P, 1454 N for HYC-M, and 1581 N for HYC-P. The intergroup differences were significant for Finitial (KW: P = 0.0042) and for Fmax (KW: P = 0.0010). The failure types also showed differences between the restorative groups. CONCLUSIONS: The choice of restorative material had a stronger influence on the fracture load than the abutment interface workflow. Lithium disilicate showed the highest load for initial crack appearance (Finitial) and for complete fracture of the restoration (Fmax).[Abstract] [Full Text] [Related] [New Search]