These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conformational changes in concanavalin A associated with demetallization and alpha-methylmannose binding studied by Fourier transform infrared spectroscopy.
    Author: Alvarez J, Haris PI, Lee DC, Chapman D.
    Journal: Biochim Biophys Acta; 1987 Nov 05; 916(1):5-12. PubMed ID: 3663684.
    Abstract:
    Infrared spectra of concanavalin A have been obtained both in the absence and in the presence of the metal ions, Mn2+ and Ca2+, and the saccharide, alpha-methylmannose. Second derivative calculations have been used to determine the frequencies of the different amide I and II components. In the demetallized protein dissolved in H2O buffer, absorptions in the amide I, II and III regions at 1695 and 1634, 1532 and 1237 cm-1, respectively, are assigned to beta-structure, while absorptions at 1563 and both 1318 and 1343 cm-1 are assigned to turns and bends. After deuterium exchange, the residual amide II maximum in the difference spectrum shifts from 1538 to 1563 cm-1, indicating that exchange is faster in the beta-structure than in the turns. In the presence of Mn2+ and Ca2+, the amide II band component at 1532 cm-1 shifts 4-6 cm-1 to higher wavenumbers, and the amide I band component at 1634 shifts 1 cm-1 in the same direction, both in H2O and 2H2O buffers, suggesting changes in the hydrogen-bonding network of a large portion of the protein, particularly in the beta-sheet regions. The addition of alpha-methylmannose increases the magnitude of exchange from 55% to above 90%. Comparison with existing X-ray crystallographic data has been made, and the usefulness of FT-IR to complement this technique is discussed.
    [Abstract] [Full Text] [Related] [New Search]