These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Deprivation and repletion of androgen in vivo modifies triacylglycerol synthesis by rat hepatocytes. Author: Elam MB, Umstot ES, Andersen RN, Solomon SS, Heimberg M. Journal: Biochim Biophys Acta; 1987 Oct 17; 921(3):531-40. PubMed ID: 3663694. Abstract: Given the same quantity of fatty acid, livers from male rats esterify less fatty acid and secrete less triacylglycerol in very-low-density lipoprotein than do livers from female animals. To elucidate the role of testosterone in maintenance of this male pattern, conversion of [1-14C]oleic acid into triacylglycerol was assessed in vitro by rat hepatocytes (male) following gonadectomy and replacement with testosterone. Following castration, incorporation of fatty acid into triacylglycerol was increased. In contrast, esterification of exogenous fatty acid into phospholipid, cholesteryl esters, and diacylglycerol was unchanged. Treatment with testosterone (75 micrograms/day) reduced incorporation of exogenous fatty acid into triacylglycerol. Higher doses of testosterone (200 or 100 micrograms/day) modified the effect, such that inhibition was observed only at low oleate (0.5 mM) concentrations. At higher substrate concentrations (1.0-2.0 mM) the inhibitory effect was no longer observed. Further, a similar dose-dependent effect of testosterone was observed following in vivo treatment of castrate females with testosterone. These data support the concept of a regulatory role of testosterone in hepatic triacylglycerol synthesis. These findings also demonstrate a biphasic effect of testosterone, an effect that is dependent not only upon the dose of testosterone administered, but also on the concentration of fatty acid to which the hepatocyte is exposed in vitro.[Abstract] [Full Text] [Related] [New Search]