These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multi-Scale Design of Ultra-Broadband Microwave Metamaterial Absorber Based on Hollow Carbon/MXene/Mo2 C Microtube.
    Author: Wang J, Wu Z, Xing Y, Li B, Huang P, Liu L.
    Journal: Small; 2023 Apr; 19(14):e2207051. PubMed ID: 36642797.
    Abstract:
    Developing various nanocomposite microwave absorbers is a crucial means to address the issue of electromagnetic pollution, but remains a challenge in satisfying broadband absorption at low thickness with dielectric loss materials. Herein, an ultra-broadband microwave metamaterial absorber (MMA) based on hollow carbon/MXene/Mo2 C (HCMM) is fabricated by a multi-scale design strategy. The microscopic 1D hierarchical microtube structure of HCMM contributes to break through the limit of thickness, exhibiting a strong reflection loss of -66.30 dB (99.99997 wave absorption) at the thinnest matching thickness of 1.0 mm. Meanwhile, the strongest reflection loss of -87.28 dB is reached at 1.4 mm, superior to most MXene-based and Mo2 C-based microwave absorbers. Then, the macroscopic 3D structural metasurface based on the HCMM is simulated, optimized, and finally manufactured. The as-prepared flexible HCMM-based MMA realizes an ultra-broadband effective absorption in the range of 3.7-40.0 GHz at a thickness of 5.0 mm, revealing its potential for practical application in the electromagnetic compatibility field.
    [Abstract] [Full Text] [Related] [New Search]