These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: VaSUS2 confers cold tolerance in transgenic tomato and Arabidopsis by regulation of sucrose metabolism and ROS homeostasis.
    Author: Li Y, Liang G, Nai G, Lu S, Ma W, Ma Z, Mao J, Chen B.
    Journal: Plant Cell Rep; 2023 Mar; 42(3):505-520. PubMed ID: 36645437.
    Abstract:
    VaSUS2 enhances cold tolerance of transgenic tomato and Arabidopsis by regulating sucrose metabolism and improving antioxidant enzymes activity. Sucrose synthetase (SUS) is a key enzyme of sugar metabolism, and plays an important role in response to abiotic stress in plant. However, the function of VaSUS2 remains unknown in cold tolerance. Here, the cloning and functional characterization of the plasma membrane-localized VaSUS2 gene isolated from Vitis amurensis was studied. The transcript level of VaSUS2 was up-regulated under cold stress in Vitis amurensis. Heterologous expression of VaSUS2 in tomato increased SUS activity, which promoted the accumulation of glucose and fructose under cold treatment. The transgenic tomato and Arabidopsis exhibited higher levels of antioxidant enzymes activity, lower relative electrolyte leakage (REL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) content compared to wild type under cold stress. Importantly, the ability of scavenging reactive oxygen species (ROS) in transgenic plants was significantly improved. Moreover, yeast two-hybrid (Y2H) indicated that VaSnRK1 might be a potential interaction protein of VaSUS2. qRT-PCR showed that sucrose metabolism-related genes SlSUS, SlSPS and SlINV were significantly up-regulated in transgenic tomatoes. Meanwhile, the expression levels of antioxidant enzyme genes and cold-related genes CBF1, COR47 and ICE1 were up-regulated in transgenic plants. Taken together, these results suggested that VaSUS2 was involved in cold tolerance by increasing the levels of soluble sugars, improving the activity of antioxidant enzymes, and up-regulating the expression of cold-related genes in transgenic tomatoes and Arabidopsis.
    [Abstract] [Full Text] [Related] [New Search]