These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular Characterization of Resistance to Second-Line Anti-Mycobacterial Drugs among Clinical Isolates of Multidrug-Resistant Mycobacterium tuberculosis. Author: Habibnia S, Karami-Zarandi M, Zaker S, Ghalavand Z, Doustdar F, Eslami G, Kazemian H. Journal: Clin Lab; 2023 Jan 01; 69(1):. PubMed ID: 36649505. Abstract: BACKGROUND: The emergence of multidrug resistance and extensively drug-resistant tuberculosis is a serious public health crisis. Using rapid and inexpensive molecular methods such as HRM assay in the detection of second-line drugs resistance in M. tuberculosis would be helpful in the treatment and control of XDR tuberculosis cases. METHODS: MDR-TB isolates were collected from Iranian tuberculosis laboratories. Drug susceptibility test performed via the indirect proportion method utilizing LJ Medium. Susceptibility to ciprofloxacin, ofloxacin, amikacin, kanamycin, and capreomycin, as second-line anti-tuberculosis agents were assessed. Single point mutations in gyrA, rrs and eis genes were detected via HRM assay and DNA sequencing. RESULTS: A DST test was performed for 56 MDR isolates and at least 27 (48.2%) isolates were resistant to CIP or OFL. Also, 14 (25%), 12 (21.4%), and 15 (26.7%) isolates were resistant to capreomycin, amikacin, and kanamycin, respectively. D94G, A90V, and G88C mutations were the most frequent mutations in gyrA gene. Also, A1401G mutation was detected more than the other mutations in rrs gene. CONCLUSIONS: The frequency of CIP/OFL and AMK/CAP/KAN-resistant TB is considerable among Iranian tuberculosis cases. HRM assay is a rapid and inexpensive test and can detect important mutation-based drug resistance in MDR-TB and XDR-TB isolates.[Abstract] [Full Text] [Related] [New Search]