These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Association of Neighborhood Racial and Ethnic Composition and Historical Redlining With Built Environment Indicators Derived From Street View Images in the US.
    Author: Yang Y, Cho A, Nguyen Q, Nsoesie EO.
    Journal: JAMA Netw Open; 2023 Jan 03; 6(1):e2251201. PubMed ID: 36652250.
    Abstract:
    IMPORTANCE: Racist policies (such as redlining) create inequities in the built environment, producing racially and ethnically segregated communities, poor housing conditions, unwalkable neighborhoods, and general disadvantage. Studies on built environment disparities are usually limited to measures and data that are available from existing sources or can be manually collected. OBJECTIVE: To use built environment indicators generated from online street-level images to investigate the association among neighborhood racial and ethnic composition, the built environment, and health outcomes across urban areas in the US. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study was conducted using built environment indicators derived from 164 million Google Street View images collected from November 1 to 30, 2019. Race, ethnicity, and socioeconomic data were obtained from the 2019 American Community Survey (ACS) 5-year estimates; health outcomes were obtained from the Centers for Disease Control and Prevention 2020 Population Level Analysis and Community Estimates (PLACES) data set. Multilevel modeling and mediation analysis were applied. A total of 59 231 urban census tracts in the US were included. The online images and the ACS data included all census tracts. The PLACES data comprised survey respondents 18 years or older. Data were analyzed from May 23 to November 16, 2022. MAIN OUTCOMES AND MEASURES: Model-estimated association between image-derived built environment indicators and census tract (neighborhood) racial and ethnic composition, and the association of the built environment with neighborhood racial composition and health. RESULTS: The racial and ethnic composition in the 59 231 urban census tracts was 1 160 595 (0.4%) American Indian and Alaska Native, 53 321 345 (19.5%) Hispanic, 462 259 (0.2%) Native Hawaiian and other Pacific Islander, 17 166 370 (6.3%) non-Hispanic Asian, 35 985 480 (13.2%) non-Hispanic Black, and 158 043 260 (57.7%) non-Hispanic White residents. Compared with other neighborhoods, predominantly White neighborhoods had fewer dilapidated buildings and more green space indicators, usually associated with good health, and fewer crosswalks (eg, neighborhoods with predominantly minoritized racial or ethnic groups other than Black residents had 6% more dilapidated buildings than neighborhoods with predominantly White residents). Moreover, the built environment indicators partially mediated the association between neighborhood racial and ethnic composition and health outcomes, including diabetes, asthma, and sleeping problems. The most significant mediator was non-single family homes (a measure associated with homeownership), which mediated the association between neighborhoods with predominantly minority racial or ethnic groups other than Black residents and sleeping problems by 12.8% and the association between unclassified neighborhoods and asthma by 24.2%. CONCLUSIONS AND RELEVANCE: The findings in this cross-sectional study suggest that large geographically representative data sets, if used appropriately, may provide novel insights on racial and ethnic health inequities. Quantifying the impact of structural racism on social determinants of health is one step toward developing policies and interventions to create equitable built environment resources.
    [Abstract] [Full Text] [Related] [New Search]