These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual mTORC1/2 Inhibition Synergistically Enhances AML Cell Death in Combination with the BCL2 Antagonist Venetoclax.
    Author: Satta T, Li L, Chalasani SL, Hu X, Nkwocha J, Sharma K, Kmieciak M, Rahmani M, Zhou L, Grant S.
    Journal: Clin Cancer Res; 2023 Apr 03; 29(7):1332-1343. PubMed ID: 36652560.
    Abstract:
    PURPOSE: Acute myelogenous leukemia (AML) is an aggressive disease with a poor outcome. We investigated mechanisms by which the anti-AML activity of ABT-199 (venetoclax) could be potentiated by dual mTORC1/TORC2 inhibition. EXPERIMENTAL DESIGN: Venetoclax/INK128 synergism was assessed in various AML cell lines and primary patient AML samples in vitro. AML cells overexpressing MCL-1, constitutively active AKT, BAK, and/or BAX knockout, and acquired venetoclax resistance were investigated to define mechanisms underlying interactions. The antileukemic efficacy of this regimen was also examined in xenograft and patient-derived xenograft (PDX) models. RESULTS: Combination treatment with venetoclax and INK128 (but not the mTORC1 inhibitor rapamycin) dramatically enhanced cell death in AML cell lines. Synergism was associated with p-AKT and p-4EBP1 downregulation and dependent upon MCL-1 downregulation and BAK/BAX upregulation as MCL-1 overexpression and BAX/BAK knockout abrogated cell death. Constitutive AKT activation opposed synergism between venetoclax and PI3K or AKT inhibitors, but not INK128. Combination treatment also synergistically induced cell death in venetoclax-resistant AML cells. Similar events occurred in primary patient-derived leukemia samples but not normal CD34+ cells. Finally, venetoclax and INK128 co-treatment displayed increased antileukemia effects in in vivo xenograft and PDX models. CONCLUSIONS: The venetoclax/INK128 regimen exerts significant antileukemic activity in various preclinical models through mechanisms involving MCL-1 downregulation and BAK/BAX activation, and offers potential advantages over PI3K or AKT inhibitors in cells with constitutive AKT activation. This regimen is active against primary and venetoclax-resistant AML cells, and in in vivo AML models. Further investigation of this strategy appears warranted.
    [Abstract] [Full Text] [Related] [New Search]