These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural change study of pepsin in the presence of spermidine trihydrochloride: Insights from spectroscopic to molecular dynamics methods.
    Author: Habibi A, Farhadian S, Shareghi B, Hashemi-Shahraki F.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr 15; 291():122264. PubMed ID: 36652806.
    Abstract:
    Spermidine is an aliphatic polyamine that directs a set of biological processes. This work aimed to use UV-Vis spectroscopy, fluorescence spectroscopy, thermal stability, kinetic methods, docking, and molecular dynamic simulations to examine the influence of spermidine trihydrochloride (SP) on the structure and function of pepsin. The results of the fluorescence emission spectra indicated that spermidine could quench pepsin's intrinsic emission in a static quenching process, resulting in the formation of the pepsin-spermidine complex. The results discovered that spermidine had a strong affinity to the pepsin structure because of its high binding constant. The obtained results from spectroscopy and molecular dynamic approaches showed the binding interaction between spermidine and pepsin, induced micro-environmental modifications around tryptophan residues that caused a change in the tertiary and secondary structure of the enzyme. FTIR analysis showed hypochromic effects in the spectra of amide I and II and redistribution of the helical structure. Moreover, the molecular dynamic (MD) and docking studies confirmed the experimental data. Both experimental and molecular dynamics simulation results clarified that electrostatic bond interactions were dominant forces.
    [Abstract] [Full Text] [Related] [New Search]