These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: FOXO3 Activation Prevents Cellular Senescence in Emphysema Induced by Cigarette Smoke.
    Author: Jiang H, Xu Y, Jiang Y, Li Y.
    Journal: COPD; 2023 Dec; 20(1):80-91. PubMed ID: 36656684.
    Abstract:
    Because cigarette smoke can induce COPD/emphysema through accelerating senescence with or without an incomplete repair system. However, the pathogenesis of COPD following lung senescence induced by CS is not fully understood. Airspace enlargement and airway epithelial cell senescence are common finding during the COPD development. We investigated the lung tress response to CS and demonstrated that a stress-responsive transcription factor, FOXO3, was regulated by deacetylase. SIRT1 inhibited FOXO3 acetylation and FOXO3 degradation, leading to FOXO3 accumulation and activation in airway epithelial cells. CS exposure activated SIRT1 contributed to FOXO3 activation and functioned to protect lungs, as deletion of SIRT1 decreased CS-induced FOXO3 activation and resulted in more severe airway epithelial cells senescence airspace enlargement. Strikingly, deletion of FOXO3 during the development of COPD aggravated lung structural and functional damage, leading to a much more profound COPD phenotype. We show that deletion of FOXO3 resulted in decreased autophagic response and increased senescence, which may explain lung protection by FOXO3. Our study indicates that in the COPD, stress-responsive transcription factors can be activated for adaptions to counteract senescence insults, thus attenuating COPD development.
    [Abstract] [Full Text] [Related] [New Search]