These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Behavioral state-specific inhibitory postsynaptic potentials impinge on cat lumbar motoneurons during active sleep. Author: Morales FR, Boxer P, Chase MH. Journal: Exp Neurol; 1987 Nov; 98(2):418-35. PubMed ID: 3666087. Abstract: High-gain intracellular records were obtained from lumbar motoneurons in intact, undrugged cats during naturally occurring states of wakefulness, quiet sleep, and active sleep. Spontaneous, discrete, inhibitory postsynaptic potentials (IPSPs) were found to impinge on lumbar motoneurons during all states of sleep and wakefulness. IPSPs which occurred during wakefulness and quiet sleep were of relatively low amplitude and had a low frequency of occurrence. During the state of active sleep there occurred a great increase in inhibitory input. This was the result of the appearance of large-amplitude IPSPs and of an increase in the frequency of low-amplitude IPSPs which were indistinguishable from those recorded during wakefulness and quiet sleep. In addition to a difference in amplitude, the time course of the large IPSPs recorded during active sleep further differentiated them from the smaller IPSPs recorded during wakefulness, quiet sleep, and active sleep; i.e., their rise-time and half-width were of longer duration and their rate-of-rise was significantly faster. We suggest that the large, active sleep-specific IPSPs reflect the activity of a group of inhibitory interneurons which are inactive during wakefulness and quiet sleep and which discharge during active sleep. These as yet unidentified interneurons would then serve as the last link in the brain stem-spinal cord inhibitory system which is responsible for producing muscle atonia during the state of active sleep.[Abstract] [Full Text] [Related] [New Search]