These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Construction of Z-scheme Ti/Ga co-doped ZnO heterostructure photocatalyst with graphitic carbon nitride for efficient visible-light-driven dye degradation. Author: Guo J, Sun Y, Luo Q, Zhang J, Fang L. Journal: Environ Sci Pollut Res Int; 2023 Mar; 30(15):43702-43713. PubMed ID: 36662425. Abstract: Innovative solar-driven heterostructure photocatalysts are promising for removing the organic contaminants in the water environment. In this work, a sequence of well-defined Z-scheme Ti-Ga co-doped ZnO/g-C3N4 (TGZ/CN) heterostructure photocatalysts were developed via a simple sol-gel method and the single-phase dispersion method in order to realize the cooperative improvement from the Ti/Ga co-doping and construction of heterostructure. The synthesized samples were analyzed by a variety of characterization techniques, and the photocatalytic activity was assessed by photodegradation of methylene blue (MB) under visible light irradiation. Compared to the ZnO and g-C3N4, the TGZ/CN composite demonstrated higher photocatalytic performance for the degradation of MB indicating an efficient photocatalytic degradation rate of 95.4% in 105 min under visible light. Moreover, the TGZ/CN photocatalyst exhibited excellent stability after five cycles of MB photodegradation. Furthermore, the as-prepared composites' possible photocatalytic mechanism was discussed in detail. The improved photocatalytic performance primarily resulted from the effectively reduced band gap of ZnO after Ti/Ga co-doping and the facilitated separation of photoexcited e-/h+ pairs caused by the construction of Z-scheme heterojunction. This work offers novel insights in developing hybrids with highly efficient photocatalytic activity towards future environmental applications.[Abstract] [Full Text] [Related] [New Search]