These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Membrane depolarization facilitates sperm entry, large fertilization cone formation, and prolonged current responses in sea urchin oocytes.
    Author: McCulloh DH, Lynn JW, Chambers EL.
    Journal: Dev Biol; 1987 Nov; 124(1):177-90. PubMed ID: 3666304.
    Abstract:
    Depolarization of the sea urchin egg's membrane is required for two processes during fertilization: the entry of the fertilizing sperm and the block to polyspermy which prevents the entry of supernumerary sperm. In an immature sea urchin oocyte, the depolarization is very small in response to the attachment of a sperm. The purpose of this study was to determine whether the depolarization evoked by sperm attaching to an oocyte can facilitate sperm entry or induce the block to polyspermy. Individual oocytes of the sea urchin with diameters which ranged from 86 to 102% that of the average diameter for mature eggs from the same female were examined. The oocytes have a membrane potential of -73 +/- 6 mV (SD, n = 80) and a very low input resistance compared to that of mature eggs. Single sperm, following attachment to an oocyte, elicit a brief, small depolarization with a maximum amplitude of 8 +/- 1.4 mV (SE, n = 15), frequently followed by the formation of tiny filament-like fertilization cones, but the sperm fail to enter. If oocytes are voltage-clamped at membrane potentials more negative than -20 mV, following attachment of the sperm small transient inward currents occur, similar filament-like cones form, and the sperm do not enter. When many sperm attach to an oocyte which is not voltage clamped, the depolarizations sum to create a large depolarization with an amplitude of 60 to 80 mV, which shifts the oocyte's membrane potential to a value between -10 and +5 mV; more positive values are not attained. At such membrane potentials, whether the potential is maintained by the summed depolarizations of many attached sperm or by voltage clamp, large fertilization cones form, the sperm enter, and the oocytes can become highly polyspermic. In oocytes voltage clamped at +20 mV, however, both sperm entry and fertilization cone formation are suppressed. Therefore, both types of voltage-dependence for sperm entry are present in oocytes, although the depolarization caused by a single sperm is not large enough to permit its entry, nor is the depolarization caused by many sperm sufficient to prevent the entry of supernumerary sperm.
    [Abstract] [Full Text] [Related] [New Search]