These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interactions between the omega- and beta-oxidations of fatty acids. Author: Vamecq J, Draye JP. Journal: J Biochem; 1987 Jul; 102(1):225-34. PubMed ID: 3667564. Abstract: Long-chain monocarboxylic, omega-hydroxymonocarboxylic and dicarboxylic acids were activated approximately at the same rate by rat liver homogenates into their CoA esters (2-3 U/g liver). These acyl-CoA were substrates for rat liver peroxisomal beta-oxidation. The distribution of the peroxisomal oxidation of these substrates was also studied in various tissues. Rat liver mitochondria were capable of oxidizing long-chain monocarboxyl- and omega-hydroxymonocarboxylyl-CoAs but not dicarboxylyl-CoAs. When the mitochondrial preparations were incubated in coupling conditions, the addition of either free decanoic acid or free 10-hydroxydecanoic acid resulted in an increase of the oxygen uptake conversely to the addition of decanedioic acid. The comparative study of the chain-length substrate specificity of peroxisomal fatty acyl-CoA oxidase and mitochondrial fatty acyl-CoA dehydrogenase activities revealed that, actually, both types of organelles, peroxisomes and mitochondria, contain "oxido-reductases" active on long-chain monocarboxylyl-CoAs, omega-hydroxymonocarboxylyl-CoAs and dicarboxylyl-CoAs.[Abstract] [Full Text] [Related] [New Search]