These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced Electrochemical Performance of PEO-Based Composite Polymer Electrolyte with Single-Ion Conducting Polymer Grafted SiO2 Nanoparticles.
    Author: Liu X, Mao W, Gong J, Liu H, Shao Y, Sun L, Wang H, Wang C.
    Journal: Polymers (Basel); 2023 Jan 11; 15(2):. PubMed ID: 36679274.
    Abstract:
    In order to enhance the electrochemical performance and mechanical properties of poly(ethylene oxide) (PEO)-based solid polymer electrolytes, composite solid electrolytes (CSE) composed of single-ion conducting polymer-modified SiO2, PEO and lithium salt were prepared and used in lithium-ion batteries in this work. The pyridyl disulfide terminated polymer (py-ss-PLiSSPSI) is synthesized through RAFT polymerization, then grafted onto SiO2 via thiol-disulfide exchange reaction between SiO2-SH and py-ss-PLiSSPSI. The chemical structure, surface morphology and elemental distribution of the as-prepared polymer and the PLiSSPSI-g-SiO2 nanoparticles have been investigated. Moreover, CSEs containing 2, 6, and 10 wt% PLiSSPSI-g-SiO2 nanoparticles (PLi-g-SiCSEs) are fabricated and characterized. The compatibility of the PLiSSPSI-g-SiO2 nanoparticles and the PEO can be effectively improved owing to the excellent dispersibility of the functionalized nanoparticles in the polymer matrix, which promotes the comprehensive performances of PLi-g-SiCSEs. The PLi-g-SiCSE-6 exhibits the highest ionic conductivity (0.22 mS·cm-1) at 60 °C, a large tLi+ of 0.77, a wider electrochemical window of 5.6 V and a rather good lithium plating/stripping performance at 60 °C, as well as superior mechanical properties. Hence, the CSEs containing single-ion conducting polymer modified nanoparticles are promising candidates for all-solid-state lithium-ion batteries.
    [Abstract] [Full Text] [Related] [New Search]