These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Research into Autonomous Vehicles Following and Obstacle Avoidance Based on Deep Reinforcement Learning Method under Map Constraints. Author: Li Z, Yuan S, Yin X, Li X, Tang S. Journal: Sensors (Basel); 2023 Jan 11; 23(2):. PubMed ID: 36679640. Abstract: Compared with traditional rule-based algorithms, deep reinforcement learning methods in autonomous driving are able to reduce the response time of vehicles to the driving environment and fully exploit the advantages of autopilot. Nowadays, autonomous vehicles mainly drive on urban roads and are constrained by some map elements such as lane boundaries, lane driving rules, and lane center lines. In this paper, a deep reinforcement learning approach seriously considering map elements is proposed to deal with the autonomous driving issues of vehicles following and obstacle avoidance. When the deep reinforcement learning method is modeled, an obstacle representation method is proposed to represent the external obstacle information required by the ego vehicle input, aiming to address the problem that the number and state of external obstacles are not fixed.[Abstract] [Full Text] [Related] [New Search]