These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CD44 mediates hyaluronan to promote the differentiation of human amniotic mesenchymal stem cells into chondrocytes. Author: Xu Y, Wang AT, Xiao JH. Journal: Biotechnol Lett; 2023 Mar; 45(3):411-422. PubMed ID: 36680638. Abstract: OBJECTIVES: CD44 is the major receptor for hyaluronan (HA), but its effect on HA-induced differentiation of human amnion mesenchymal stem cells into chondrocytes is unclear. This study aimed to investigate the effects and mechanisms of CD44 in HA-induced chondrogenesis. METHODS: Immunocytochemistry and toluidine blue staining were used to assess the secretion of type II collagen and aggrecan, respectively. qRT-PCR and western blotting were performed to evaluate the expression of key genes and proteins. RESULTS: The expression of aggrecan and type II collagen was downregulated after using the anti-CD44 antibody (A3D8). The transcriptional levels of chondrocytes‑associated genes SRY‑box transcription factor 9, aggrecan, and collagen type II alpha 1 chain were also decreased. Thus, CD44 may mediate HA-induced differentiation of hAMSCs into chondrocytes. Further investigation indicated that expression of phosphorylated (p)‑Erk1/2 and p‑Smad2 decreased following CD44 inhibition. The changes in the expression of p-Erk1/2 and p-Smad2 were consistent after using the ERK1/2 inhibitor (U0126) and agonist (EGF), respectively. After administering the p-Smad2 inhibitor, the expression levels of p-ERK1/2 and p-Smad2 appeared downregulated. The results showed crosstalk between Erk1/2 and Smad2. Moreover, inhibition of p-Erk1/2 and p-Smad2 significantly reduced the accumulation of aggrecan and type II collagen. CONCLUSION: These data indicate that CD44 mediates HA-induced differentiation of hAMSCs into chondrocytes by regulating Erk1/2 and Smad2 signaling.[Abstract] [Full Text] [Related] [New Search]