These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Explore drug-like space with deep generative models. Author: Wang J, Mao J, Wang M, Le X, Wang Y. Journal: Methods; 2023 Feb; 210():52-59. PubMed ID: 36682423. Abstract: The process of design/discovery of drugs involves the identification and design of novel molecules that have the desired properties and bind well to a given disease-relevant target. One of the main challenges to effectively identify potential drug candidates is to explore the vast drug-like chemical space to find novel chemical structures with desired physicochemical properties and biological characteristics. Moreover, the chemical space of currently available molecular libraries is only a small fraction of the total possible drug-like chemical space. Deep molecular generative models have received much attention and provide an alternative approach to the design and discovery of molecules. To efficiently explore the drug-like space, we first constructed the drug-like dataset and then performed the generative design of drug-like molecules using a Conditional Randomized Transformer approach with the molecular access system (MACCS) fingerprint as a condition and compared it with previously published molecular generative models. The results show that the deep molecular generative model explores the wider drug-like chemical space. The generated drug-like molecules share the chemical space with known drugs, and the drug-like space captured by the combination of quantitative estimation of drug-likeness (QED) and quantitative estimate of protein-protein interaction targeting drug-likeness (QEPPI) can cover a larger drug-like space. Finally, we show the potential application of the model in design of inhibitors of MDM2-p53 protein-protein interaction. Our results demonstrate the potential application of deep molecular generative models for guided exploration in drug-like chemical space and molecular design.[Abstract] [Full Text] [Related] [New Search]