These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Methylene blue removal from aqueous solutions using a biochar/gellan gum hydrogel composite: Effect of agitation mode on sorption kinetics.
    Author: Elgarahy AM, Mostafa HY, Zaki EG, ElSaeed SM, Elwakeel KZ, Akhdhar A, Guibal E.
    Journal: Int J Biol Macromol; 2023 Mar 31; 232():123355. PubMed ID: 36682653.
    Abstract:
    Hydrogel membranes are prepared by casting a mixture of gellan gum (associated with PVA) and biochar produced from a local Egyptian plant. The mesoporous material is characterized by a specific surface area close to 134 m2 g-1, a residue of 28 % (at 800 °C), and a pHPZC close to 6.43. After grinding, the material is tested for Methylene Blue sorption at pH 10.5: sorption capacity reaches 1.70 mmol MB g-1 (synergistic effect of the precursors). The sorption isotherms are fitted by both Langmuir and Sips eqs. MB sorption increases with temperature: the sorption is endothermic (∆H°: 12.9 kJ mol-1), with positive entropy (∆S°: 125 J mol-1 K-1). Uptake kinetics are controlled by agitation speed (optimum ≈200 rpm) and resistance to intraparticle diffusion. The profiles are strongly affected by the mode of agitation: the equilibrium time (≈180 min) is reduced to 20-30 min under sonication (especially at frequency: 80 kHz). The mode of agitation controls the best fitting equation: pseudo-first order rate agitation for mechanical agitation contrary to pseudo-second order rate under sonication. The sorption of MB is poorly affected by ionic strength (loss <6 % in 45 g L-1 NaCl solution). Desorption (faster than sorption) is completely achieved using 0.7 M HCl solution. At the sixth recycling, the loss in sorption is close to 5 % (≈ decrease in desorption efficiency). The process is successfully applied for the treatment of MB-spiked industrial solution: the color index decreases by >97 % with a sorbent dose close to 1 g L-1; a higher dose is required for maximum reduction of the COD (60 % at 3 g L-1).
    [Abstract] [Full Text] [Related] [New Search]