These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dextromethorphan improves locomotor activity and decreases brain oxidative stress and inflammation in an animal model of acute liver failure.
    Author: Ommati MM, Jamshidzadeh A, Saeed M, Rezaei M, Heidari R.
    Journal: Clin Exp Hepatol; 2022 Sep; 8(3):178-187. PubMed ID: 36685267.
    Abstract:
    INTRODUCTION: Hepatic encephalopathy (HE) is a serious clinical problem leading to severe neurological disorders and death. No specific treatment is available for the management of HE-associated neurological damage. This study aimed to evaluate the effect of dextromethorphan (DXM) on oxidative stress and disturbed locomotor activity in an animal model of HE. MATERIAL AND METHODS: In the current study, BALB/c mice received acetaminophen (APAP; 1000 mg/kg, intraperitoneally [IP]). Dextromethorphan (0.5, 1, 5, 10 mg/kg, subcutaneously [SC]) was injected in three doses (every 6 h), starting two hours after acetaminophen. Animals' locomotor activity, brain and plasma ammonia levels, as well as biomarkers of oxidative stress and inflammatory cytokines in the brain tissue, were assessed 24 hours after acetaminophen injection. RESULTS: It was found that APAP administration was significantly associated with liver damage and increased plasma biomarkers of liver injury. Ammonia levels in plasma and brain tissue of APAP-treated mice also increased significantly. There was also a significant difference in motor activity between the control and APAP-treated animals. The acute liver injury also increased the brain level of pro-inflammatory cytokines (tumor necrosis factor a [TNF-a], interleukin 6 [IL-6], and interleukin 1b [IL-1b]). It was found that DXM could significantly improve the motor activity of animals in all doses and decrease the biomarkers of inflammation and oxidative stress in the brain tissue of animals with hyperammonemia. CONCLUSIONS: The effect of dextromethorphan on oxidative stress and inflammation seems to be a major mechanism for its neuroprotective properties in HE. Based on these data DXM could be applied as an effective pharmacological option against HE-associated brain injury.
    [Abstract] [Full Text] [Related] [New Search]