These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The ab initio potential energy curves of atom pairs and transport properties of high-temperature vapors of Cu and Si and their mixtures with He, Ar, and Xe gases.
    Author: Kayang KW, Volkov AN, Zhilyaev PA, Sharipov F.
    Journal: Phys Chem Chem Phys; 2023 Feb 08; 25(6):4872-4898. PubMed ID: 36692492.
    Abstract:
    The potential energy curves (PECs) for the homonuclear He-He, Ar-Ar, Cu-Cu, and Si-Si dimers, as well as heteronuclear Cu-He, Cu-Ar, Cu-Xe, Si-He, Si-Ar, and Si-Xe dimers, are obtained in quantum Monte Carlo (QMC) calculations. It is shown that the QMC method provides the PECs with an accuracy comparable with that of the state-of-the-art coupled cluster singles and doubles with perturbative triples corrections [CCSD(T)] calculations. The QMC data are approximated by the Morse long range (MLR) and (12-6) Lennard-Jones (LJ) potentials. The MLR and LJ potentials are used to calculate the deflection angles in binary collisions of corresponding atom pairs and transport coefficients of Cu and Si vapors and their mixtures with He, Ar, and Xe gases in the range of temperature from 100 K to 10 000 K. It is shown that the use of the LJ potentials introduces significant errors in the transport coefficients of high-temperature vapors and gas mixtures. The mixtures with heavy noble gases demonstrate anomalous behavior when the viscosity and thermal conductivity can be larger than that of the corresponding pure substances. In the mixtures with helium, the thermal diffusion factor is found to be unusually large. The calculated viscosity and diffusivity are used to determine parameters of the variable hard sphere and variable soft sphere molecular models as well as parameters of the power-law approximations for the transport coefficients. The results obtained in the present work include all information required for kinetic or continuum simulations of dilute Cu and Si vapors and their mixtures with He, Ar, and Xe gases.
    [Abstract] [Full Text] [Related] [New Search]