These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Room-temperature third-order nonlinear Hall effect in Weyl semimetal TaIrTe4.
    Author: Wang C, Xiao RC, Liu H, Zhang Z, Lai S, Zhu C, Cai H, Wang N, Chen S, Deng Y, Liu Z, Yang SA, Gao WB.
    Journal: Natl Sci Rev; 2022 Dec; 9(12):nwac020. PubMed ID: 36694799.
    Abstract:
    The second-order nonlinear Hall effect observed in the time-reversal symmetric system has not only shown abundant physical content, but also exhibited potential application prospects. Recently, a third-order nonlinear Hall effect has been observed in MoTe2 and WTe2. However, few-layer MoTe2 and WTe2 are usually unstable in air and the observed third-order nonlinear Hall effect can be measured only at low temperature, which hinders further investigation as well as potential application. Thus, exploring new air-stable material systems with a sizable third-order nonlinear Hall effect at room temperature is an urgent task. Here, in type-II Weyl semimetal TaIrTe4, we observed a pronounced third-order nonlinear Hall effect, which can exist at room temperature and remain stable for months. The third-order nonlinear Hall effect is connected to the Berry-connection polarizability tensor instead of the Berry curvature. The possible mechanism of the observation of the third-order nonlinear Hall effect in TaIrTe4 at room temperature has been discussed. Our findings will open an avenue towards exploring room-temperature nonlinear devices in new quantum materials.
    [Abstract] [Full Text] [Related] [New Search]