These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adipose-Derived Stem Cell Extracellular Vesicles Improve Wound Closure and Angiogenesis in Diabetic Mice.
    Author: Wang JW, Zhu YZ, Ouyang JY, Nie JY, Wang ZH, Wu S, Yang JM, Yi YY.
    Journal: Plast Reconstr Surg; 2023 Feb 01; 151(2):331-342. PubMed ID: 36696316.
    Abstract:
    BACKGROUND: Currently, there is a lack in therapy that promotes the reepithelialization of diabetic wounds as an alternative to skin grafting. Here, the authors hypothesized that extracellular vesicles from adipose-derived stem cells (ADSC-EVs) could accelerate wound closure through rescuing the function of keratinocytes in diabetic mice. METHODS: The effect of ADSC-EVs on the biological function of human keratinocyte cells was assayed in vitro. In vivo, 81 male severe combined immune deficiency mice aged 8 weeks were divided randomly into the extracellular vesicle-treated diabetes group (n = 27), the phosphate-buffered saline-treated diabetes group (n = 27), and the phosphate-buffered saline-treated normal group (n = 27). A round, 8-mm-diameter, full-skin defect was performed on the back skin of each mouse. The wound closure kinetics, average healing time, reepithelialization rate, and neovascularization were evaluated by histological staining. RESULTS: In vitro, ADSC-EVs improved proliferation, migration, and proangiogenic potential, and inhibited the apoptosis of human keratinocyte cells by suppressing Fasl expression with the optimal dose of 40 μg/mL. In vivo, postoperative dripping of ADSC-EVs at the dose of 40 μg/mL accelerated diabetic wound healing, with a 15.8% increase in closure rate and a 3.3-day decrease in average healing time. ADSC-EVs improved reepithelialization (18.2%) with enhanced epithelial proliferation and filaggrin expression, and suppressed epithelial apoptosis and Fasl expression. A 2.7-fold increase in the number of CD31-positive cells was also observed. CONCLUSION: ADSC-EVs improve diabetic wound closure and angiogenesis by enhancing keratinocyte-mediated reepithelialization and vascularization. CLINICAL RELEVANCE STATEMENT: ADSC-EVs could be developed as a regenerative medicine for diabetic wound care.
    [Abstract] [Full Text] [Related] [New Search]