These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Removal of methylene blue dye from aqueous solution using an efficient chitosan-pectin bio-adsorbent: kinetics and isotherm studies. Author: Mohrazi A, Ghasemi-Fasaei R. Journal: Environ Monit Assess; 2023 Jan 27; 195(2):339. PubMed ID: 36705863. Abstract: Wastewater contains organic compounds, including dyes, which have potential risks to the environment. Hence, these compound needs to be eliminated from the aqueous solution. In the present study, chitosan-pectin composite (Cs-Pc) was used as an adsorbent to remove methylene blue dye (MB) from synthetic wastewater. To evaluate the parameters affecting adsorption, including the initial MB concentration, solution pH, contact time, and Cs-Pc dose, batch experiments were carried out. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), and pH point of zero charges (pH pzc) were applied for characterizations of Cs-Pc. The optimum conditions were obtained with an initial MB concentration of 50 mg L-1: solution pH ~ 11, Cs-Pc dose: 1.5 g L-1 and 180 min contact time, which caused 97.77% of MB removal. In addition, the removal efficiency of MB was more influenced by pH than by sorbate dose. Also, Cs-Pc had a higher ability to remove MB than chitosan and pectin, probably due to its highly porous structure and rough surfaces that provides active sites and facilitate MB adsorption. The maximum removal efficiency and the adsorption capacity of MB onto Cs-Pc at 500 mg L-1 concentration under optimum conditions were 98.67% and 328.02 mg g-1, respectively. The adsorption kinetics and isotherms were best described by pseudo-second-order and Freundlich equation, respectively. After four times of recycling, the removal efficiency of MB was above 96%. Electrostatic and pi-pi interactions are the main mechanisms for the removal of MB onto the adsorbent. So the application of Cs-Pc is promising for MB removal from polluted solutions not only due to its strong adsorbing capability but also due to its excellent ability to reuse.[Abstract] [Full Text] [Related] [New Search]