These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Toward ultra-tough and heat-resistant biodegradable polylactide/core-shell rubber blends by regulating the distribution of rubber particles with stereocomplex crystallites. Author: Liu H, Zhao Y, Zheng Y, Chen J, Wang J, Gao G, Bai D. Journal: Int J Biol Macromol; 2023 Mar 31; 232():123422. PubMed ID: 36708887. Abstract: Ultra-tough and heat-resistant poly(l-lactide)/core-shell rubber (PLLA/CSR) blends were fabricated by utilizing stereocomplex (SC) crystallites to effectively regulate the CSR distribution in PLLA matrix. Linear and 3-11 armed poly(d-lactide)s (PDLAs) were synthesized and then melt-mixed with PLLA/CSR blend. Interestingly, the incorporated PDLA chains could collaborate with PLLA chains to form dense SC crystallites network in PLLA/PDLA/CSR blends, thus inducing the CSR particles to transform from uniform distribution structure to network-like structure. With increasing the PDLA arm numbers, the size of CSR clusters in the network-like structure first increased and then decreased, and the continuity of the network-like structure first remained at a high level and then decreased obviously. The formation of CSR network-like structure could remarkably improve the impact strength of PLLA/PDLA/CSR blends without deteriorating their strength and modulus (compared with PLLA/CSR blend), and the CSR network-like structure with larger-sized CSR clusters and higher continuity could help obtain higher impact strength (78.3 kJ/m2). Moreover, the heat resistance of PLLA/PDLA/CSR blends could also be significantly improved (the highest Vicat softening temperature was 131 °C) by the SC crystallites network and CSR network-like structure. This work provides an effective strategy for controlling the rubber network-like morphology and thereby preparing high-performance PLLA materials.[Abstract] [Full Text] [Related] [New Search]