These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Machine Learning-Based Prediction of Hospital Admission Among Children in an Emergency Care Center. Author: Hatachi T, Hashizume T, Taniguchi M, Inata Y, Aoki Y, Kawamura A, Takeuchi M. Journal: Pediatr Emerg Care; 2023 Feb 01; 39(2):80-86. PubMed ID: 36719388. Abstract: OBJECTIVES: Machine learning-based prediction of hospital admissions may have the potential to optimize patient disposition and improve clinical outcomes by minimizing both undertriage and overtriage in crowded emergency care. We developed and validated the predictive abilities of machine learning-based predictions of hospital admissions in a pediatric emergency care center. METHODS: A prognostic study was performed using retrospectively collected data of children younger than 16 years who visited a single pediatric emergency care center in Osaka, Japan, between August 1, 2016, and October 15, 2019. Generally, the center treated walk-in children and did not treat trauma injuries. The main outcome was hospital admission as determined by the physician. The 83 potential predictors available at presentation were selected from the following categories: demographic characteristics, triage level, physiological parameters, and symptoms. To identify predictive abilities for hospital admission, maximize the area under the precision-recall curve, and address imbalanced outcome classes, we developed the following models for the preperiod training cohort (67% of the samples) and also used them in the 1-year postperiod validation cohort (33% of the samples): (1) logistic regression, (2) support vector machine, (3) random forest, and (4) extreme gradient boosting. RESULTS: Among 88,283 children who were enrolled, the median age was 3.9 years, with 47,931 (54.3%) boys and 1985 (2.2%) requiring hospital admission. Among the models, extreme gradient boosting achieved the highest predictive abilities (eg, area under the precision-recall curve, 0.26; 95% confidence interval, 0.25-0.27; area under the receiver operating characteristic curve, 0.86; 95% confidence interval, 0.84-0.88; sensitivity, 0.77; and specificity, 0.82). With an optimal threshold, the positive and negative likelihood ratios were 4.22, and 0.28, respectively. CONCLUSIONS: Machine learning-based prediction of hospital admissions may support physicians' decision-making for hospital admissions. However, further improvements are required before implementing these models in real clinical settings.[Abstract] [Full Text] [Related] [New Search]